

Quantifying progressive fibrosis using artificial intelligence

BSTI Virtual Annual Meeting 19.11.2020 Dr. P Charters, Dr. G Robinson, Dr. J Suntharalingam, Dr R Mackenzie Ross, Dr. J Rodrigues Royal United Hospitals, Bath

Overview

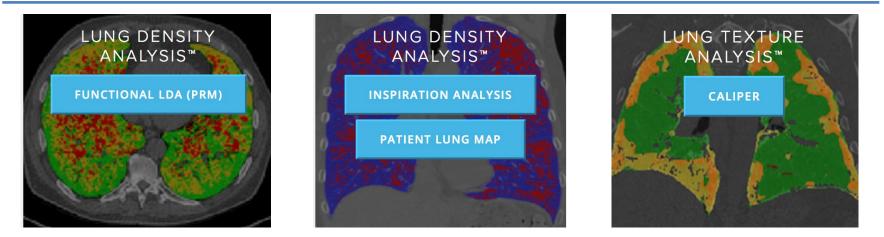
- > What is IMBIO?
- ► Lung Texture AnalysisTM
 - ➤Example output
- Case presentation
- Discussion
- ➤ Summary

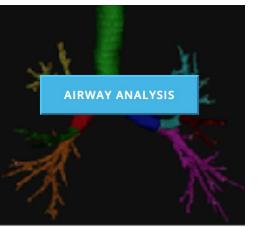
"a leader in fully automated, biomarker-based solutions for quantitative Lung imaging"

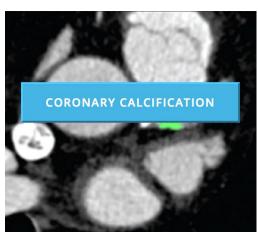
The Problem

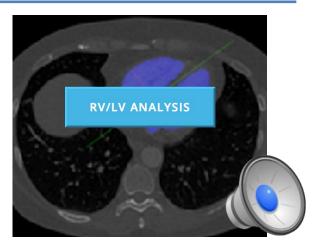
- > 1 Billion imaging studies are requested in the U.S. and EU alone every year.
- This explosion of imaging hasn't come with the tools radiologists need to see and interpret all of the information
- 99% of imaging diagnosis remains a purely manual human process, one which is increasingly stressed by the demands of growing patient volume and the need to lower healthcare costs.

The Role of IMBIO

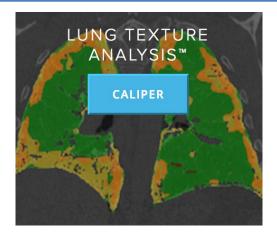

- Fully automated solution
- Preserve radiologists time
- Remove interobserver variability (longitudinal change)
- Providing data and visualisation to help make better personalized patient care decisions






Commercial Algorithms

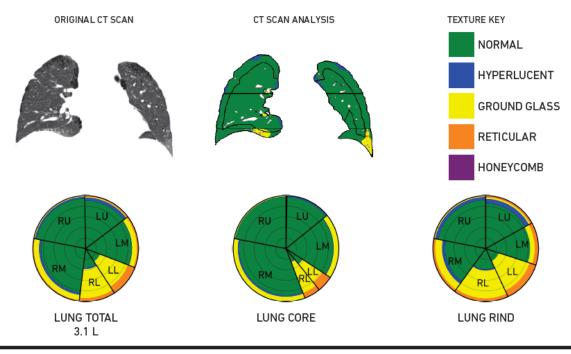
Research Algorithms



Commercial Algorithms

Lung Texture Analysis ™

"Algorithms enable clinicians to quickly analyse a patient's lung density and texture. This includes using advanced computer vision to transform a standard chest CT into a detailed map of lung textures in order to identify cases of ILD and other fibrotic conditions."


- Lung Texture Analysis[™] is based on CALIPER technology (Computer Aided Lung Informatics for Pathology Evaluation and Rating Mayo Clinic).
- Post-processing algorithms characterise and quantify lung parenchymal patterns on HRCT
- Fully automated no user input or intervention.
- LTA's DICOM image series provides an intuitive texture overlay on the patients HRCT
- Quantifies the lung textures that are key to identifying ILD's and other fibrotic conditions (normal, ground glass, reticular, honeycomb and hyperlucent).
- Physician summary report provides detailed quantification of the textures by lung region to help reduce reading variation, and enable data-based decisions for drug therapy, clinical procedures and other personalised patient care.

Example Case

Segmentation algorithm: automatically identify and separate the two lungs from the rest of the body.

Classification algorithm: identify each lung pixel as one of the five lung parenchymal pattern classifications.

CLIMANADY					
SUMMARY	NORMAL	HYPERLUCENT	GROUNDGLASS	RETICULAR	НОМЕУСОМВ
TOTAL LUNG	77 %	3 %	16 %	4 %	0 %
Left Lung (1.3 L)	75 %	3 %	17 %	5 %	0 %
Left Upper (T/C/R)	90 % / 97 % / 85 %	6%/2%/9%	2 % / 0 % / 2 %	2%/1%/4%	0%/0%/0%
Left Middle (T/C/R)	88 % / 90 % / 84 %	0%/1%/0%	9%/9%/9%	3%/0%/7%	0%/0%/0%
Left Lower (T/C/R)	29%/37%/26%	0%/0%/0%	57 % / 45 % / 61 %	14 % / 18 % / 12 %	0%/0
Right Lung (1.8 L)	79 %	3 %	15 %	3 %	
Right Upper (T/C/R)	94 % / 97 % / 92 %	3 % / 1 % / 6 %	2 % / 2 % / 1 %	1%/0%/1%	0 7
Right Middle (T/C/R)	84 % / 88 % / 76 %	4%/3%/6%	10 % / 8 % / 13 %	2%/1%/4%	0
Right Lower (T/C/R)	36 % / 27 % / 39 %	2 % / 0 % / 3 %	55 % / 63 % / 52 %	7 % / 10 % / 6 %	0%/0%/0%

T = total, C = core, R = rind, T = C + R

Case presentation

- ➢ 69 year-old male
- ➢ PMHx:
 - Pulmonary embolism 1989 (Rx 3-6/12 anticoagulation)
 - Myocardial infarction x 2 1985, NSTEMI 2019
 - ➢ NSIP ILD 2011
 - Diametes mellitus 2012
 - Syncopal episodes on exertion
- DHx: Aspirin, Atorvastastin, Candesartan, Ezetimibe, Lansoprazole, Metformin, Clopidogrel, Bisoprolol, Azithromycin, LTOT 2-3 L/min
- Never smoker, no pets. Occupation: food production industry

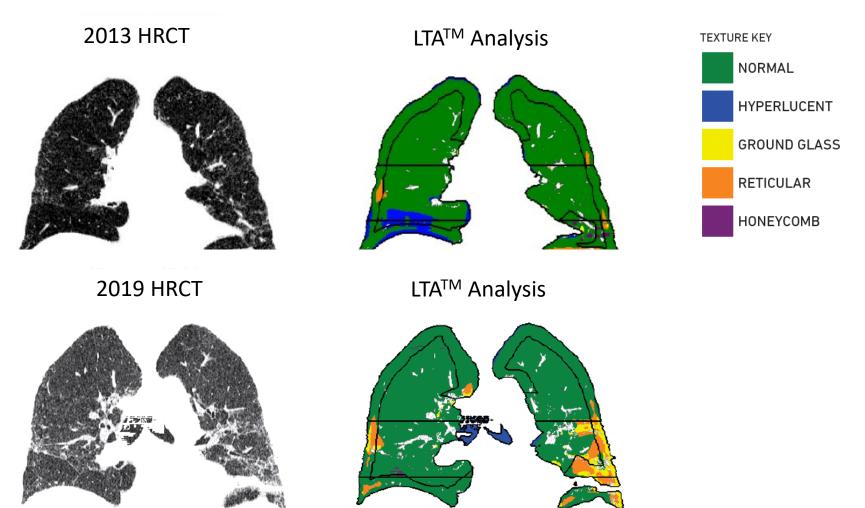
HRCT in 2013: NSIP

- Exercise tolerance reducing from half a mile to ~100m
- Lung function:

Nov 2019: FEV1 1.40 (44%), FVC 1.77 (43%), FEV1/FVC ratio 79%, TLco 2.23 (24%), Kco 0.81 (63%).

March 2014: FEV1 12.22, FVC 12.73, Kco 1.30.

- Echocardiogram: RV dilatation, septal flattening, RV pressure and volume overload
- CTPA 2019: New pulmonary hypertension. Progressive fibrotic interstitial lung disease.
- Repeat HRCT confirmed fibrotic ILD progressed since baseline.



Royal United Hospitals Bath

HRCT 2013	NORMAL	HYPERLUCENT	GROUNDGLASS	RETICULAR	НОМЕҮСОМВ
TOTAL LUNG	85 %	3 %	3 %	9 %	0 %
Left Lung (2.0 L)	85 %	1 %	3 %	10 %	1 %
Left Upper (T/C/R)	95 % / 99 % / 92 %	3 % / 1 % / 5 %	1 % / 0 % / 1 %	1 % / 0 % / 2 %	0 % / 0 % / 0 %
Left Middle (T/C/R)	89 % / 98 % / 74 %	0 % / 0 % / 0 %	3 % / 1 % / 6 %	8 % / 1 % / 20 %	0 % / 0 % / 0 %
Left Lower (T/C/R)	63 % / 83 % / 50 %	0 % / 0 % / 1 %	8 % / 1 % / 12 %	26 % / 10 % / 35 %	3 % / 6 % / 2 %
Right Lung (2.3 L)	85 %	4 %	2 %	8 %	1 %
Right Upper (T/C/R)	97 % / 100 % / 94 %	2 % / 0 % / 4 %	0 % / 0 % / 0 %	1 % / 0 % / 2 %	0 % / 0 % / 0 %
Right Middle (T/C/R)	87 % / 95 % / 67 %	3 % / 3 % / 4 %	2 % / 0 % / 7 %	8 % / 2 % / 22 %	0 % / 0 % / 0 %
Right Lower (T/C/R)	68 % / 85 % / 60 %	8 % / 6 % / 9 %	5 % / 0 % / 7 %	18 % / 7 % / 23 %	1 % / 2 % / 1 %

HRCT 2019	NORMAL	HYPERLUCENT	GROUNDGLASS	RETICULAR	НОМЕҮСОМВ
TOTAL LUNG	66 %	1 %	8 %	25 %	0 %
Left Lung (1.4 L)	56 %	1 %	12 %	31 %	0 %
Left Upper (T/C/R)	89 % / 97 % / 83 %	1 % / 0 % / 1 %	2 % / 0 % / 3 %	8 % / 3 % / 13 %	0%/0%/0%
Left Middle (T/C/R)	35 % / 50 % / 15 %	1 % / 2 % / 0 %	20 % / 13 % / 29 %	44 % / 35 % / 56 %	0%/0%/0%
Left Lower (T/C/R)	15 % / 16 % / 14 %	0 % / 0 % / 0 %	22 % / 15 % / 25 %	63 % / 68 % / 61 %	0%/1%/0%
Right Lung (1.7 L)	74 %	1 %	4 %	21 %	0 %
Right Upper (T/C/R)	94 % / 100 % / 89 %	1 % / 0 % / 1 %	0 % / 0 % / 1 %	5%/0%/9%	0%/0%/0%
Right Middle (T/C/R)	71 % / 85 % / 39 %	1 % / 1 % / 1 %	4 % / 2 % / 11 %	23 % / 12 % / 47 %	1 % / 0 % / 2 %
Right Lower (T/C/R)	39 % / 47 % / 36 %	0 % / 0 % / 0 %	13 % / 7 % / 15 %	48 % / 45 % / 49 %	0%/1%/0%

Discussion

- LTA pattern = ILD diagnosis
- Radiological interpretation currently subjective.
- Clinical utility: Patient cannot reliably perform pumonary function test Pulmonary function testing is unsafe (aerosol generating procedure)
- LTA is quantitative and can plot longitudinal change (including treatment response)
- Potential Prognostic Value: Correlations to Lung Function & Survival
- Future: baseline and change in % fibrosis correlated with RVLV and PH outcome would be interesting.

Summary

- Quantitative Lung Texture Analysis[™] aids diagnosis, removes subjective interobserver variability, may prognosticate outcome and more accurately assess treatment response.
- ➤ Lung Texture Analysis[™] is invaluable when the patient cannot reliably perform pulmonary function tests and/or where pulmonary function tests are associated with the risk of COVID-19 transmission.

References & Acknowledgement

- 1. We would like to acknowledge the technical support provided by Imbio LLC during the quantitative analysis of chest CT scans
- V Zavaletta, BJ Bartholmai, R Robb. High Resolution Multi-Detector CT Aided Tissue Analysis and Quantification of Lung Fibrosis. Acad Radiol. 2007 July ; 14(7): 772– 787.
- 3. Maldonado, Moua, et al. Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J 2014; 43: 204–21
- Raghunath, Moua, et al. Correlation of Quantitative Lung Tissue Characterization as Assessed by CALIPER With Pulmonary Function and 6-Minute Walk Test. Chest. 2011;140(4_MeetingAbstracts):1040A
- Guidelines for recommencing physiological services during the Coronavirus Disease 2019 (COVID-19) endemic phase [Internet]. Artp.org.uk. 2020 [cited 8 November 2020]. Available from:

https://www.artp.org.uk/write/MediaUploads/Standards/COVID19/ARTP_COVID 19_endemic__guidance_Vers_5.6_final.pdf